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A new dual wing harmonium model that integrates term frequency features and term connection fea-
tures into a low dimensional semantic space without increase of computation load is proposed for the
application of document retrieval. Terms and vectorized graph connectionists are extracted from the
graph representation of document by employing weighted feature extraction method. We then develop a
new dual wing harmonium model projecting these multiple features into low dimensional latent topics
with different probability distributions assumption. Contrastive divergence algorithm is used for efficient
learning and inference. We perform extensive experimental verification, and the comparative results
suggest that the proposed method is accurate and computationally efficient for document retrieval.
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1. Introduction

The rapid development of Internet has made massive amount of
document data available and easy access to people's lives, which
leads to a growing demand of higher accuracy and speed for
document retrieval. Document retrieval refers to finding similar
documents for a given user's query. A user's query can be ranged
from a full description of a document to a few keywords. Most
of the extensively used retrieval approaches are keywords-based
searching methods, e.g. www.google.com, in which untrained users
provide a few keywords to the search engine finding the relevant
documents in a returned list. Another type of document retrieval
is to use a query document to search similar ones. Using an entire
document as a query performs well in improving retrieval accu-
racy, but it is more computationally demanding compared with the
keywords-based method. Most existing document retrieval systems
only use term frequency as feature units to build statistical mod-
els and develop natural language processing (NLP) approaches for
document retrieval [1]. Usually the connections among terms are
overlooked which results in losing important semantic information
of documents. To exploit rich information in documents and en-
hance the performance of relevant data mining, it is often necessary
to model more features extracted from documents into a lower
dimensional semantic space.

Vector space model (VSM) [2], the most popular and widely used
term frequency (tf )–inverse-document-frequency (idf ) scheme, uses
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a basic vocabulary of “words” or “terms” for feature description. The
term frequency is the number of occurrences of each term, and the
inverse-document-frequency is a function of the number of docu-
ment where a term took place. A termweighted vector is constructed
for each document using tf and idf. Similarity between two docu-
ments is then measured using “cosine” distance or any other dis-
tance functions [3]. Thus, the VSM scheme reduces arbitrary length
of term vector in each document to fixed length. But a lengthy vec-
tor is required for describing the frequency information of terms,
because the number of words involved is usually huge. This causes a
significant increase of computational burden making the VSMmodel
impractical for large corpus. In addition, VSM scheme reveals lit-
tle statistical structure about a document because of only using low
level document features (i.e. term frequency).

To overcome the shortcomings of VSM, researchers have pro-
posed several dimensionality reduction methods with low dimen-
sional latent representations to capture document semantics. Latent
semantic indexing (LSI) [4], an extension from VSM model, maps
the documents and terms to a latent space representation by per-
forming a linear projection to compress the feature vector of the
VSM model into low dimension. Singular value decomposition
(SVD) is employed to find the hidden semantic association between
term and document for conceptual indexing. In addition to feature
compression, LSI model is useful in encoding the semantics [5]. A
step forward in probabilistic models is probabilistic latent semantic
indexing (PLSI) [6] that defines a proper generative model of data to
model each word in a document as a sample from a mixture distri-
bution and develop factor representations for mixture components.
Chien and Wu [7] further developed an adaptive Bayesian PLSI for
incremental learning and corrective training that was designed to
retrieve relevant documents in the presence of changing domain or
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topics. By realizing overfitting problems and the lack of description
at the level of documents in PLSI, Blei et al. [8] introduced an exten-
sion in this regard, latent Dirichlet allocation (LDA). LDA is viewed as
a three-level hierarchical Bayesian model, in which each document
is modeled as a finite mixture over an underlying set of topics. Using
probabilistic approach is able to provide an explicit representation
of a document. Compared with LDA, exponential family harmonium
(EFH) model [9] is an alternative two-layer model using exponen-
tial family distributions and the semantics of undirected models for
document retrieval. EFH is able to reduce the feature dimension sig-
nificantly using a few latent topics (or hidden units) to represent
a document. But EFH is only practical for term observations with
very few states (e.g. binary). Gehler et al. [10] then developed a rate
adapting Poisson (RAP) model that follows the general architecture
of EFH. RAP model couples latent topics to term counts using a con-
ditional Poisson distribution for observed count data and conditional
binomial distribution for latent topics involving a weight matrix, re-
spectively. Xing et al. [11] and Yang et al. [12] developed dual wing
harmonium (DWH) and hierarchical harmonium (HH) to model as-
sociated data from multiple sources jointly for the special applica-
tions in video classification. In their DWHmodel, the authors directly
treated the term counts via Bernoulli distribution whose rates are
determined by the combination of latent topics and the whole im-
age color histogram via a multivariate Gaussian distribution whose
mean is determined in the same way.

In all the above mentioned approaches, it is noticed that they use
independent word as feature unit. These feature extraction schemes
are a rough representation of a document. For example, two doc-
uments containing similar term frequencies may be contextually
different when the spatial distribution of terms is very different, i.e.
school, computer, and science mean very different when they appear
in different parts of a document compared to the case of school of
computer science that appear together. In addition, with the evolu-
tion of natural language, there are increasing combinatorial words
emerged such as computer network, neural network, and complex
network. Thus, using only term frequency information from the “bag
of words” model is not the most effective way to account contextual
similarity that includes the word inter-connections and spatial dis-
tribution of words throughout the document. The semantics may be
very different whether considering the term connections or not. To
address these shortcomings and improve the retrieval accuracy, first,
we in this paper introduce undirected graph for document represen-
tation that resulting in more semantic information to be included.
Term frequency features and vectorized graph connectionists are
then extracted from each document by weighted feature extraction
method. Motivated by ideas in Ref. [11], we then develop a new dual
wing harmonium to generate distributed latent representations of
documents with modeling multiple features jointly. We model term
counts (term frequency features) with a conditional Poisson distri-
bution and term connection features with a conditional Bernoulli
distribution, respectively. Latent topics are treated as a conditional
binomial distribution involving weighted matrixes and multiple
features. DWH in this paper is an extension of RAP [10] model with
combining multiple features into document latent representation
framework without increasing computation burden. The perfor-
mance of DWHmodel is investigated in the applications of document
retrieval. We show the superiority of DWH for retrieval accuracy
compared to RAP model and the recently proposed LDA [8]. We also
investigate the influence of number of latent topics and different
learning methods for DWH inference. Therefore, the contribution of
this paper is twofold. First, we propose a multiple feature extraction
framework for representing a document combined with traditional
term counts feature and term connection feature extracted from
graph. Multiple features are able to express more semantic in-
formation of the term inter-connections and spatial distribution

throughout document. Second, a new DWH model is developed to
project multiple features to low dimensional latent representations
capturing the semantics hidden in documents. These latent topics
are then applied to document retrieval with promising results.

The remaining sessions of this paper are organized as follows.
Multiple features extraction framework is introduced in Section 2.
In Section 3, a new DWH model is described in details with brief in-
troduction to EFH and RAP models. Section 4 introduces contrastive
divergence (CD) algorithm for DWH learning and inference, and
summarizes the implementation framework for document retrieval
system. Extensive experimental results followed by discussions are
presented in Section 5. The paper ends with conclusions and future
work propositions in Section 6.

2. Multiple features extraction framework

In this section, we describe multiple features (terms and term
connections) extraction framework to extract more information from
each document for better document analysis.

2.1. Graph representation of document

In our work, we use undirected graph to represent each docu-
ment in corpus. It is worth mentioning that graph representation for
document is not new. An interesting application of graph represen-
tation describing words links with a perspective of evolving complex
network for human language study can be found in Refs. [13,14]. In
Refs. [15,16], different directed graphs with a few most frequent
terms as nodes were defined to represent a document, k-nearest
neighbor algorithm (k-NN) with different graph matching distances
based on maximum common subgraph was applied to web docu-
ment classification. Graph matching can be accomplished in poly-
nomial time making it impractical for large datasets. Apart from
the computation time limitation, there may be difficulties in finding
maximum common subgraph (subgraph isomorphism) between two
documents. Although it is quite straightforward to apply directed
graph to express the semantics using terms in sequence appearing
in the document, in many cases the sequence of terms is convertible
with conveying the same semantics for human language. For exam-
ple, “computer science” can be expressed as “science of computer”,
which delivers the same meaning. Thus, in this paper we use undi-
rected graph for representation of each document.

First, we remove the stop words (set of common words such as
“in”, “the”, and “are”, etc.) which deliver little discriminate informa-
tion. Then, we use the rest of the terms to form an undirected graph.
An undirected graph G for a document is denoted by G = (V , E,�,�),
where V represents a set of vertices (i.e. terms), E is a set of edges
or connections between terms, � : V → LV assigns an attribute (i.e.
term frequency) to each vertex of V, similarly, � : E → LE assigns
an attribute (i.e. term connection frequency) to each edge of E. For
example, Fig. 1 illustrates how such a graph would look like for a
sentence “we found it significantly more expensive for sending money
to Mexico, but slightly less for sending money to the United Kingdom”.
Note that we use only a single vertex for each term even if a term ap-
pears more than once in the document. In an early implementation,
we used a single vertex to represent a term chain consisting of two
and three words that appear together throughout the document, but
later found that using only a single vertex for each term is sufficient
and improves the performance of our application. Each vertex is la-
beled with term frequency measure that indicates how many times
the related term appears in the document. Similarly, each edge is la-
beled with term connection frequency measure that indicates how
many times the connected terms appear together in the document.
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Fig. 1. Undirected graph as an example: “we found it significantly more expensive
for sending money to Mexico, but slightly less for sending money to the United
Kingdom”. (Here, “we”, “it”, “more”, “for”, “to”, “but”, “less”, “for”, “the” are stop
words that are removed.)

Here, “connected” means that two terms are adjacent to each other
without distinguishing the term sequence.

2.2. Term-frequency (TF) feature extraction

First, extract all the words from all documents except for stop
words in a database and apply stemming algorithm to each word.
Here, Porter stemming algorithm [17] is applied to extract stem of
each word, and stems are used as basic features instead of origi-
nal words. Thus, “send”, “sent” and “sending” are all considered the
same word. Store the stemmed words together with the informa-
tion of term-frequency ft and the document-frequency f td. Then, con-
struct the vocabulary based on TF features. We use a term-weighting
measure in calculating the weight of each word, which is similar to
VSM [18]

Wt =
√
ft × idf (1)

where the inverse-document-frequency idf = log2(N/f
t
d), and N is the

total number of documents in the corpus. Then, the words are sorted
in descending order according to the weights and the first n words
are selected to construct the vocabulary. The choice of n depends on
the database.

2.3. Term connection frequency (TCF) feature extraction

Feature extraction of TCF is based on the word vocabulary, which
is constructed in Section 2.2. We use terms in the word vocabulary
to build an undirected graph for each document. Based on graph rep-
resentation, if we directly use graph matching methods to calculate
the semantic similarity like Ref. [16], much time and storage space
will be wasted for large datasets because the adjacent matrix of each
document is so sparse. The adjacent matrix Al(l=1, 2, . . . ,N) for graph
Gl is denoted by Al = [Al

ij]n×n where Al
ij = f l,tcij represents TCF between

term i and term j in document l. Then, we calculate the total TCF ad-
jacent matrix for all the documents (i.e. A = ∑N

l=1 A
l). We also store

the document frequency f tcd,ij for term connection between term i and
term j in the database. We then use the same weighting measure to
calculate the weight of each term connection for a pair of terms.

Wtc
ij =

√
f tcij × idf tcij (2)

where the inverse-document-frequency idf tcij = log2(N/f
tc
d,ij). Then, we

sort the term connections by using the weights in descending order
and select the first m term connections.

2.4. Summary on multiple features extraction framework

Multiple features extraction aims to provide inputs with more
semantic information for the DWH model. The overall procedure of
extracting multiple features is summarized as follows.

(1) Extract words from all the documents in the corpus excepting
for stop words and apply stemming to each word. Calculate the
weight of each word according to Eq. (1), and select the first n
words to construct TF-based vocabulary.

(2) Build graph for each document using selected words as nodes
and calculate the total adjacent matrix A. Select the first m term
connections (or the indexes of edges in graph) based on Eq. (2)
to construct TCF-based vocabulary.

(3) Calculate TF histogram and TCF histogram for each document.
Each element of the histogram indicates the number of times
that the corresponding term or term connection appears in a
document.

(4) Save the multiple features (TF and TCF) for each document as
inputs for DWH model.

3. Dual wing harmonium model for document data

The original harmonium model based on harmonium theory [19]
refers to a family of bipartite undirected graphical models. Fig. 2(a)
illustrates the bipartite topology of a harmonium that consists of
two layers of nodes. Nodes X = {Xi} at the bottom layer represent
the observed data and nodes H = {Hk} at the top layer denote the
latent topics (or hidden units) of the data. For document data, X can
represent TF feature (i.e. term counts) of each document, and H rep-
resent resultant discriminator by projecting higher dimensional TF
feature into low dimensional semantic space. One of the advantages
of harmonium model is that the nodes within the same layer are
conditionally independent given the nodes in the other layer, which
facilitates the generation of harmonium distribution based on two
between-layer conditional distributions p(x|h) (p(x|h)=�i(xi|h)) and
p(h|x) (p(h|x) = �jp(hj|x)).

3.1. EFH model

EFH model introduced by Welling et al. [9], a special class of
harmonium models in exponential family, can be understood as an
undirected probability model that combines latent topics in the log-
probability domain. The conditional distributions at two layers and
the joint distribution (harmonium random field) are in the following
way [9,12]:

p(x|h) = �i(xi|h) ∝ �i exp

⎧⎨
⎩

⎛
⎝�i +

∑
j

Wijg(hj)

⎞
⎠ f (xi)

⎫⎬
⎭ (3)

p(h|x) = �jp(hj|x) ∝ �j exp

⎧⎨
⎩

⎛
⎝�j +

∑
i

Wijf (xi)

⎞
⎠ g(hj)

⎫⎬
⎭ (4)

p(x,h) ∝ exp

⎧⎨
⎩

∑
i

�if (xi) +
∑
j

�jg(hj) +
∑
ij

Wijf (xi)g(hj)

⎫⎬
⎭ (5)

where {f (xi)} and {g(hj)} are the sufficient statistics of nodes {xi} and
{hj}. {�i}, {�j} and {Wij} are the parameters, they can be identified
by learning algorithm. In the above distributions the global partition
function is not explicitly shown, which makes the harmonium learn-
ing more difficult. From the distributions, we can see that the data
nodes the term {Wij} couples the data nodes x to the latent topics h.
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Fig. 2. Topologies of different harmonium models: (a) basic harmonium and (b) DWH.

Through learning and inference, latent topics h will be harmonized
with the observed data x so that h capture the semantics in x.

3.2. RAP model

To generate a component-wise nonlinear projection from input
space to output latent space, Gehler et al. [10] extended the EFH
model to RAP model that is a more general topology of the expo-
nential family harmonium. RAP model couples latent topics to term
counts using a conditional Poisson distribution involving a single
weight matrix. They used conditional Poisson distribution for the TF
feature and conditional binomial distribution for the latent topics as
follows [10].

p(x|h) = �i

⎛
⎝Poissonxi

⎛
⎝�i +

∑
k

Wikhk

⎞
⎠

⎞
⎠ (6)

p(h|x) = �k

⎛
⎝Binomialhk

⎛
⎝�

⎛
⎝�k +

∑
i

Wikxi

⎞
⎠ ,Mk

⎞
⎠

⎞
⎠ (7)

where �(·) is the sigmoid function, �i is the log mean rate of the
conditional Poisson distribution for term i, �k = log(pk/(1 − pk)) (pk
is the probability of success), and Mk is the total number of sam-
ples for the conditional binomial distribution for topic k. The joint
distribution over (x,h) can be expressed as

p(x,h) ∝ exp

⎧⎨
⎩

∑
i

(�ixi − log (	(xi)))

+
∑
k

(�khk − log(	(hk)) − log(	(Mk − hk))) +
∑
ik

Wikxihk

⎫⎬
⎭
(8)

where 	(·) is the Gamma function. The marginal probability of nodes
x is given by

p(x) ∝ exp

⎧⎨
⎩

∑
i

(�ixi − log(	(xi)))

+
∑
k

⎛
⎝Mk log

⎛
⎝1 + exp

⎛
⎝∑

i

Wikxi + �k

⎞
⎠

⎞
⎠

⎞
⎠

⎫⎬
⎭ (9)

RAP models the behavior that the values of the variables at the op-
posite layer shift the canonical parameters of the variables at the
corresponding layer. The variation of {�k} decides the impact on
the Poisson rate {�i} with rate adapting property.

3.3. DWH model

For video and image applications, Xing et al. [11] and Yang et al.
[12] proposed a DWH for the fusion of features from multiple data
sources including text features and image features. In their DWH
model, the authors directly treated the term counts via Bernoulli
distribution and the whole image color histogram via a multivari-
ate Gaussian distribution, and then multiple features were projected
into the latent space with low dimension. This new fusion strat-
egy performs well for image annotation and video classification.
Motivated by Ref. [11] using DWH modeling the video data, we
will present a new DWH model for document data in this section.
Fig. 2(b) shows the architecture of DWH for document data that
consists of two wings at the bottom layer. One wing represents the
observed TF feature {Xi}, and the other denotes the sampled TCF
feature {Yi}. Thus DWH integrates TF and TCF features as low level
features into latent topics as high level features to represent docu-
ment semantics. These two types of features interact with each other
through with the weighted matrixes.
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In our DWH, we use conditional Poisson distribution for the TF
feature like RAP model as follows:

p(xi|h) = Poisson

⎛
⎝xi|�i +

∑
k

Wikhk

⎞
⎠ (10)

For TCF feature, we first binarize the TCF feature extracted in
Section 2.3 indicating the presence or absence of connection be-
tween two terms. Through weighted selecting method for TCF, it
is enough to discriminate the intro-information among different
classes of documents. We do not put strong emphasis on this issue
because in our applications this binary state of term connection still
captures the similarity approximate to use counts of term connec-
tion. Then we use conditional Bernoulli distribution for the binary
TCF feature as follows:

p(yj|h) = Bernoulli

⎛
⎝yj|�

⎛
⎝
j +

∑
k

Ujkhk

⎞
⎠

⎞
⎠ (11)

where {Ujk} represents the weighted matrix coupling the TCF feature
to latent topics. Finally, the latent topics {Hk} follow the conditional
binomial distribution depending on a weighted combination of the
TF x and binary TCF Y in the following way:

p(hk|x,Y) = Binomial

⎛
⎝hk|�

⎛
⎝�k +

∑
i

Wikxi +
∑
j

Ujkyj

⎞
⎠ ,Mk

⎞
⎠ (12)

We then define the following joint distribution to be consistent with
the above conditional distributions

p(x,Y ,h) ∝ exp

⎧⎨
⎩

∑
i

(�ixi − log(	(xi))) +
∑
j


jyj

+
∑
k

(�khk − log(	(hk)) − log(	(Mk − hk)))

+
∑
ik

Wikxihk +
∑
jk

Ujkyjhk

⎫⎬
⎭ (13)

The marginal distribution over (x,Y) can be expressed as follows by
marginalizing out the latent topics h in Eq. (13):

p(x,Y) ∝ exp

⎧⎨
⎩

∑
i

(�ixi − log(	(xi))) +
∑
j


jyj

+
∑
k

⎛
⎝Mk log

⎛
⎝1 + exp

⎛
⎝∑

i

Wikxi +
∑
j

Ujkyj + �k

⎞
⎠

⎞
⎠

⎞
⎠

⎫⎬
⎭
(14)

The detailed derivation of Eq. (14) can be found in the Appendix.
Likewise, in Eqs. (13) and (14) the global partition function is not
explicitly shown.

From the above probability distributions, we see that DWHmodel
in this paper is an extension of RAP model. It inherits rate adapting
property that is not only determined by TF features but also influ-
enced by TCF features. Thus the learned latent topics will capture
more semantic information from documents to perform document
data mining task.

4. Learning and inference

The parameters of DWH model including {�i}, {
j}, {�k}, {Wik} and
{Ujk} can be learned by maximizing the likelihood of the document
data according to Eq. (14). Due to the complexity of the model, it is
extremely difficult to obtain closed-form solution to the optimization
problem. Thus we have to perform stochastic gradient ascent on the

log-likelihood of data in iteration. The learning rules can be derived
from log-likelihood of Eq. (14) in the following way:

��i = 〈xi〉p̃ − 〈xi〉p (15)

�
j = 〈yj〉p̃ − 〈yj〉p (16)

��k = Mk(〈�(h̄k + �k)〉p̃ − 〈�(h̄k + �k)〉p) (17)

�Wik = Mk(〈xi�(h̄k + �k)〉p̃ − 〈xi�(h̄k + �k)〉p) (18)

�Ujk = Mk(〈zj�(h̄k + �k)〉p̃ − 〈zj�(h̄k + �k)〉p) (19)

where h̄k=∑
i Wikxi+

∑
j Ujkyj, 〈·〉p̃ represents expectation under em-

pirical distribution (i.e. data average), and 〈·〉p denotes the expec-
tation under model distribution of the harmonium at the current
values of the parameters. However, due to the presence of global
partition function in the log-likelihood of Eq. (14), it is hard to
directly estimate the model expectation 〈·〉p. There are many approx-
imate inference methods to estimate this expectation such as con-
trastive divergence learning [20,21], mean field (MF) approximation
[22], and Langevin method [23]. CD learning algorithm is proposed
to approximate exact gradient ascent search. MF is an alternative
method that approximates the model distribution through a factor-
ized form as a product of marginal distributions over the clusters of
variables [11,22]. With inheriting all the proposal moves of Langevin
Monte Carlo method, the Langevin approach uses noisy steepest as-
cent to avoid local optima as well as taking advantage of the gradient
information [23]. In this section we only introduce the details how
to use CD learning algorithm for DWH training. We also compare
the performance of different algorithms for learning and inference
in Section 6.

In each step of gradient ascent, CD starts from a separate Gibbs
sampler defined by Eqs. (10)–(12) at a data case, runs it for only a
few steps and then uses these samples to approximate the model
expectation 〈·〉p together with computing the gradient through
Eqs. (15)–(19). It has been proved that the parameters through this
learning process will converge to the maximum likelihood estima-
tion [21]. The whole learning procedures are described as follows.

CD learning procedure for DWH model:
Initialize the parameters {�i}, {
j}, {�k}, {Wik} and {Ujk}
Loop until convergence (by setting thresholds)

(1) Sample the latent topics given the input data using Eq. (12)
(2) Resample the corresponding TF data-case given the sampled
values of the latent topics using Eq. (10)
(3) Resample the corresponding TCF data-case given the sampled
values of the latent topics using Eq. (11)
(4) Compute the data averages and sample averages in
Eqs. (15)–(19)
(5) Update the parameters using the gradient ascentrules in
Eqs. (15)–(19)

End Loop
Return {�i}, {
j}, {�k}, {Wik}, {Ujk}

After learning and inference, all the document data can be mapped
to low dimensional latent representations, and then DWH model
is ready to perform various document data mining tasks. Here, we
summarize the whole implementation framework for document re-
trieval system as an application example shown in Fig. 3.
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Fig. 3. Implementation framework for document retrieval system. (a) Training phase. (b) Retrieval phase.
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Fig. 4. Performance of DWH model based on retrieval results. (a) Precision vs number of retrieved document. (b) Precision vs recall. (c) AUC vs number of latent topics.

5. Experimental results and discussions

5.1. Database and experimental setup

In this study, the document database, “Html_CityU1”, which
consists of 26 categories [1], were used for all simulations. Each

category includes 400 documents making a total number of 10,400
documents. The corpus was split into a training set and a test set
that is used for query; 1040 test documents were randomly se-
lected from the 26 categories, i.e. 26× 40. The remaining 9360 doc-
uments were used for training. In order to provide a more real-life
testing platform, we established this database consisting of docu-
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Fig. 5. Performance of RAP model based on retrieval results. (a) Precision vs number of retrieved document. (b) Precision vs recall. (c) AUC vs number of latent topics.

ments with size ranged from few hundred words to over 20 thou-
sand words. For each category, 400 documents were retrieved from
“Google” using a set of keywords. Some of the keywords are shared
among different categories, but the set of keywords for a category is
different from that of other categories. The database can be found on-
line at “www.ee.cityu.edu.hk/∼twschow/Html_CityU1.rar” for other
researchers. After DWH training, the test set was used to verify the
performance of this work. All the simulations were performed on a
PC with Intel Core-2 2.13GHz and 2GB memory. The feature extrac-
tion programs were written in Java programming language, and all
the document retrieval programs were tested in Matlab 7.1.

5.2. Comparative study on retrieval performance

In this section based on the above dataset we extensively compare
DWH model to RAP and LDA on retrieval performance. Parameters
in the simulation are set as follows. Both number of selected terms
n and that of term connections m were equal to 4000. The learning
rate and the momentum term to speed up the convergence in DWH
model were set to 0.01 and 0.95, respectively. The DWH based on
1000 learning iterations using gradient ascent on mini-batches of
100 random training samples per iteration. All the above parameters
were found delivering good performance. It was also noticed that a
mild deviation from these settings would not have noticeable effect
on the overall performance. In order to delete the effect of sampling

randomness on results, harmoniummodels (i.e. DWH and RAP) were
run for 20 times independently in training phase. The details of RAP
and LDA can be found in Refs. [10,8]. To quantify the retrieval re-
sults, we used averaged precision and recall values for each query
document from the test set. The precision and recall measure are
defined as follows:

Precision = No. of correctly retrieved documents
No. of total retrieved documents

(20)

Recall = No. of correctly retrieved documents
No. of total documents in relevant category

(21)

Based on above precision and recall measures, to evaluate the influ-
ence of different numbers of latent topics, a measure named “area
under the precision-recall curve” (AUC) as a function of the number
of latent topics can be simply defined as follows:

AUC(L) =
nmax∑
iA=2

(PL(iA) + PL(iA − 1)) × (RL(iA) − RL(iA − 1))
2

(22)

where L represents the number of latent topics, nmax denotes the
maximum number of retrieved documents, PL(iA) and RL(iA) repre-
sent the precision and recall values with iA documents retrieved cor-
responding to the number of latent topics L.

First, we summarize the retrieval performance of DWH, RAP and
LDA with different measures in Figs. 4–6, which leads to the best

http://www.ee.cityu.edu.hk/~twschow/Html_CityU1.rar
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Fig. 6. Performance of LDA model based on retrieval results. (a) Precision vs number of retrieved document. (b) Precision vs recall. (c) AUC vs number of latent topics.

choice of the number of latent topics for document retrieval. Several
interesting observations can be found in Figs. 4–6. For DWH model
with the number of latent topics from 10 unto 40, Fig. 4(a) shows
the precision results when the retrieved documents, the most simi-
lar training documents from the datasets for every query, vary from
1 to 360. It is observed that using 10 latent topics deliver the better
precision results, and using 20 and 30 latent topics exhibits similar
performance. It is also noted that the performance has been signif-
icantly deteriorated when the number of latent topics becomes 40.
Similar results are shown in Fig. 4(b) for the sketch of the relation-
ship between precision and recall. In order to study the effect of the
number of latent topics thoroughly, we scan the number of latent
topics from 5 to 50 at increments of five in Fig. 4(c) with AUC eval-
uation measure. It is found that using 10 latent topics performs bet-
ter than other number of latent topics. The performance degrades
slightly when the number of latent topics is in the range of 15–30.
Number of latent topics from 35 to 50 significantly deteriorates the
retrieval results compared to 10 latent topics. The performance of
RAP model with different number of latent topics is summarized in
Fig. 5. Similarly, RAP model with 10 latent topics delivers better re-
sults. Similar tendency of increasing the number of latent topics in
RAP is shown in Fig. 5(a) and (b) compared with DWH model. In
Fig. 5(c), it is observed that the performance does not deteriorate
in a significant rate with the increase of the number of latent top-
ics. Fig. 6 shows the performance of LDA model with the number of

latent topics from 10 to 200. LDA with 150 latent topics exhibits
better results, and its performance improves with increasing the
number of latent topics from 10 to 150. The performance deteriorates
significantly when continuously increasing number of latent topics
from 150 to 200.

In summary, harmonium models (DWH and RAP) deliver better
results with only 10 latent topics to capture the semantics in our
datasets, whil LDA has to use more latent topics to represent the
semantics hidden in documents. Therefore, harmonium models are
computationally efficient because they are able to use fewer latent
topics to represent the semantics of documents. These interesting
observations show that harmonium models are more efficient than
other counterpart probability models in the capability of mapping
low level document features to high level semantic latent topics. We
then summarized the retrieval results of different models based on
their best choices of number of latent topics in Table 1 together with
Fig. 7. In Fig. 7, we see that DWH model consistently delivers better
performance than the other two models. Also, harmonium models
perform significantly better than LDA model that uses more latent
topics. In Table 1, we list the precision and recall values quantita-
tively with the number of retrieved documents from 1 to 360. DWH
provides about 5% improvement of precision compared with RAP
model with only TF features. It is believed that the improvement is
resulted by including the TCF features to harmoniums. Harmonium
models are able to deliver at least 35% improvement of precision
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Table 1
Retrieval results of different models with different latent topics.

Method Latent topics No. of retrieved documents

Precision (%) Recall (%)

1 10 40 360 1 10 40 360

DWH 10 0.8087 0.7507 0.6996 0.4654 0.0022 0.0209 0.0777 0.4654
RAP 10 0.7942 0.7121 0.6468 0.4166 0.0022 0.0198 0.0719 0.4166
LDA 150 0.5298 0.3675 0.2850 0.1551 0.0015 0.0102 0.0317 0.1551
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Fig. 7. Comparative retrieval results among different models. (a) Precision vs number of retrieved document. (b) Precision vs recall.

Table 2
Retrieval results of harmonium models with different features.

Method Feature No. of retrieved documents

Precision (%) Recall (%)

1 10 40 360 1 10 40 360

DWH TF + TCF 0.8087 0.7507 0.6996 0.4654 0.0022 0.0209 0.0777 0.4654
RAP TF 0.7942 0.7121 0.6468 0.4166 0.0022 0.0198 0.0719 0.4166
RAP TCF 0.4346 0.3123 0.2336 0.0970 0.0012 0.0087 0.0260 0.0970

compared with LDA model with 150 latent topics. Similar results are
also shown in the recall results among different models. In order to
show the significance of TCF features based on our dataset, we also
summarized the retrieval results of harmonium models with differ-
ent features in Table 2. It is observed that DWHmodel is able to auto-
matically combine these multiple features with better performance.

Our comparative study and analysis indicate that the superior
performance delivered by DWH model is attributed to the co-
existence of the basic harmonium properties and integration of
multiple features which includes more semantic information from
documents. Conditional probability independence in two between-
layer units and efficient inference contribute the promising perfor-
mance compared to other counterpart probabilistic models like LDA.

5.3. Comparative study on different algorithms for DWH learning

This section studies the effect of different learning approaches
for DWH inference based on retrieval results. Fig. 8 together with
Table 3 shows the AUC values of DWH model implemented using
different approximate inference methods with the number of latent
topics from 5 to 50 at increments of five. From Fig. 8, Langevin and
contrastive divergence learning methods perform similarly except
for the case of using 10 latent topics. CD learning delivers signifi-
cantly better results than Langevin and mean field sampling with 10
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Fig. 8. AUC performance of different learning methods for DWH training.

latent topics. On the other hand, MF performs slightly better than
Langevin and CD methods with increasing the number of latent top-
ics from 15 to 40. In Table 3, it is observed that CD learning provides
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Table 3
AUC results of different learning methods for DWH training.

Latent topics

Methods 5 10 15 20 25 30 35 40 45 50

CD 0.2810 0.3896 0.1349 0.1947 0.1243 0.1751 0.0702 0.0690 0.0515 0.0537
MF 0.0820 0.0893 0.1258 0.2414 0.1886 0.1921 0.2285 0.1172 0.0819 0.0492
Langevin 0.3066 0.2310 0.1356 0.1795 0.1711 0.1738 0.1355 0.0691 0.1332 0.0946

30% improvement of AUC compared with MF, and provides 15% im-
provement of AUC compared with Langevin with 10 latent topics.
Therefore, in our study CD appears to be the best choice for the learn-
ing and inference of DWH model in terms of retrieval performance.

6. Conclusion

A new dual wing harmonium model for document data is pro-
posed for the application to document retrieval. This DWH model
integrates multiple document features into low dimensional seman-
tic space with few latent topics for document representation. First,
we formed an undirected graph to represent each document, term
frequency features and term connection frequency features through
vectorizing graph connectionists are extracted from documents by
using weighted feature extraction method. These multiple features
that consist of more semantic information hidden in documents are
then as inputs of DWH model. DWH model extends the basic RAP

model to two wings by using different conditional probability dis-
tributions. It does not only include the properties of RAP, but also
contains capability to capture term connection semantic information
with significant improvement of accuracy for document retrieval.
The experimental results corroborate that the proposed approach is

accurate and computationally efficient for document retrieval. Our
future work will include finding more efficient methods of mining
term connections from documents, and we also need to work on the
inference algorithms to enhance the learning efficiency of harmo-
nium models.
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7. Appendix

This is to the derivation of the marginal distribution over (x,Y)
in DWH model. We defined the joint distribution over (x,Y ,h) as
mentioned in Section 3.3 in the following way:

p(x,Y ,h) ∝ exp
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On the other hand, the latent topics {Hk} follow the conditional bi-
nomial distribution depending on a weighted combination of the TF
x and binary TCF Y as follows:

p(hk|x,Y) = Binomial
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According to the definition of conditional probability distribution,
we are ready to derive the marginal distribution over (x,Y) as

p(x,Y) = p(x,Y ,h)
p(h|x,Y) = p(x,Y ,h)
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which is exactly consistent with Eq. (14).
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